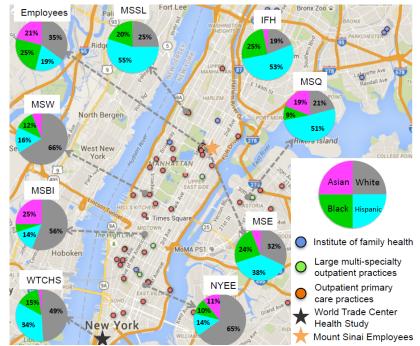
"Monogenic" contributions to complex traits: scaling pleiotropy

Judy H. Cho, M.D. Ward-Coleman Professor of Translational Genetics Director, Charles F. Bronfman Institute for Personalized Medicine Icahn School of Medicine at Mount Sinai



March 1, 2018

The Short-term Challenge for BioMe

The Mount Sinai BioMe – EMR-linked Biobank

- 1. Founded in September 2007 (by Dr. Erwin Bottinger),
- 2. an ongoing, consented EMR-linked bioand data repository, additional data from questionnaire
- 3. A longitudinal design, including past, current and future records,
- 4. enrolls participants non-selectively from MSMC's patient population of 80,000 inpatient and 700,000 outpatient visits annually
- 5. Currently 41,000 participants,
- 6. participants are 40% Hispanic, 35% European, 25% African-American
- recall based on phenotype or/and genotype for in-depth follow-up studies,

Ruth Loos, Ph.D.

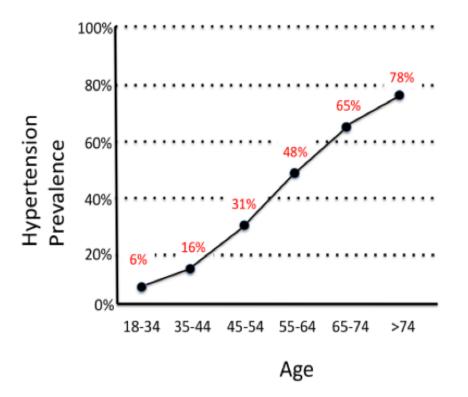
Advantages to Health-System based Biobanks

- 1. "Case" vs. "control" status is overly-simplistic
- 2. Health Systems have enormous "phenotype" data: labs, radiology, pathology data
- 3. Development of disease is *time*-dependent
- 4. Flipping the genetic paradigm

Redefining human health & disease through a much deeper study of human traits

Regeneron exome sequencing the entire BioMe Biobank: 32K sequences back

- Large non-European ancestry cohorts linked to a health system biobank
- Identifying new loss-of-function mutations, never before identified in humans (Human Knockout Project)
 - Studying humans with naturally occurring gene knockouts identified by sequencing
 - <u>Safety</u> information for targeting/blocking a pathway
 - Identifying drug targets for protective, loss-of-function variants—GPCRs, kinases, channels


Leptin knockout

Phenotypes for actionable variants: penetrance estimates, *phenotypic variability*

Of horses and zebras

I. Age-dependent prevalence of hypertension

Typical definition: >140/90

New definition: >130/80

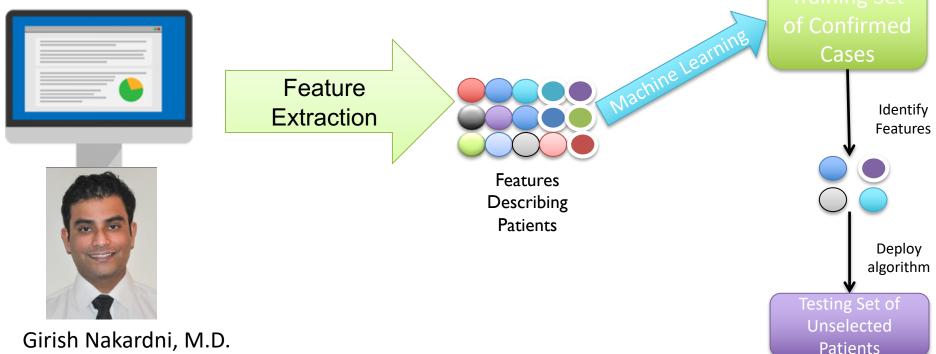
"Monogenic" forms of hypertension: estimated 3-5% of all cases. Genetics first approach to identify <u>early cases</u>

II. Primary Immunodeficiencies: under-diagnosed diseases?

Infections are very common—viral, bacterial

Likely continuum of genetic differences in the capacity to fight infections—major evolutionary selection

Crucial time element: decreased immune capacities at age extremes (newborns, elderly)


For consideration: protocols to alert health care providers re risk factors for immunodeficiences—e.g.

- Two major infections
- In a non-alcoholic
- Below the age of 50

Chronic granulomatous diseases: NADPH oxidases, infections and increased risk for IBD

III. Scaling rare disease discovery within health systems through machine learning

- ~ 6,000 rare diseases that are known
- Most of these diseases are not diagnosed precluding appropriate therapy

This will enable us to set up automated disease surveillance programs so that rare diseases are promptly diagnosed

"Expected" & "Unexpected" Pleiotropy

IL23R is an IBD (Crohn's disease & ulcerative colitis) gene

- Crohn's disease (CD) <u>and</u> ulcerative colitis (UC)
 Multiple independent alleles, notably a <u>protective</u>, LOF minor allele Arg381Gln (2-3 fold protection)
- IL-23 immune pathway: key role in Th17 cells, Tc17, ILC

<u>Majority</u> of IBD loci show similar trends between CD vs. UC

Science 2006; 314: 1461-3

Across autoimmunity: a) MHC class I vs. II; b) PTPN22 Arg620Trp, and c) IL23R

Table 1 Major genetic association signals across autoimmune diseases

	MHC class	IL23R	PTPN22	CTLA4 ^a
Type 1 diabetes	Class II		Arg620 <u>Trp</u>	Non-coding
Juvenile idiopathic arthritis	Class II		Arg620 <u>Trp</u>	
Autoimmune thyroid disease	Class II		Arg620 <u>Trp</u>	Non-coding
Rheumatoid arthritis	Class II		Arg620 <u>Trp</u>	Non-coding
Multiple sclerosis	Class II			
Celiac disease	Class II			Non-coding
Systemic lupus erythematosis	Class II		Arg620 <u>Trp</u>	
Psoriatic arthritis	Class I	Distinct alleles		
Psoriasis	Class I	Arg381 <u>GIn</u>		
Ankylosing spondylitis	Class I	Arg381 <u>GIn</u>		
Inflammatory bowel disease	Class II	Arg381 <u>Gin</u>	Arg620Trp	

Underlined and bolded codons represent the allele associated with disease. [AU: what do colors mean?]

^aNon-coding variants associated with the CTLA4 region may be distinct between diseases.

IL23R-associated diseases respond to blocking IL-23 pathway

Cho and Feldmann, Nature Medicine 2015; 730

Cystic fibrosis: poly-organ recessive Mendelian disease—chloride channel defect

Organ manifestations

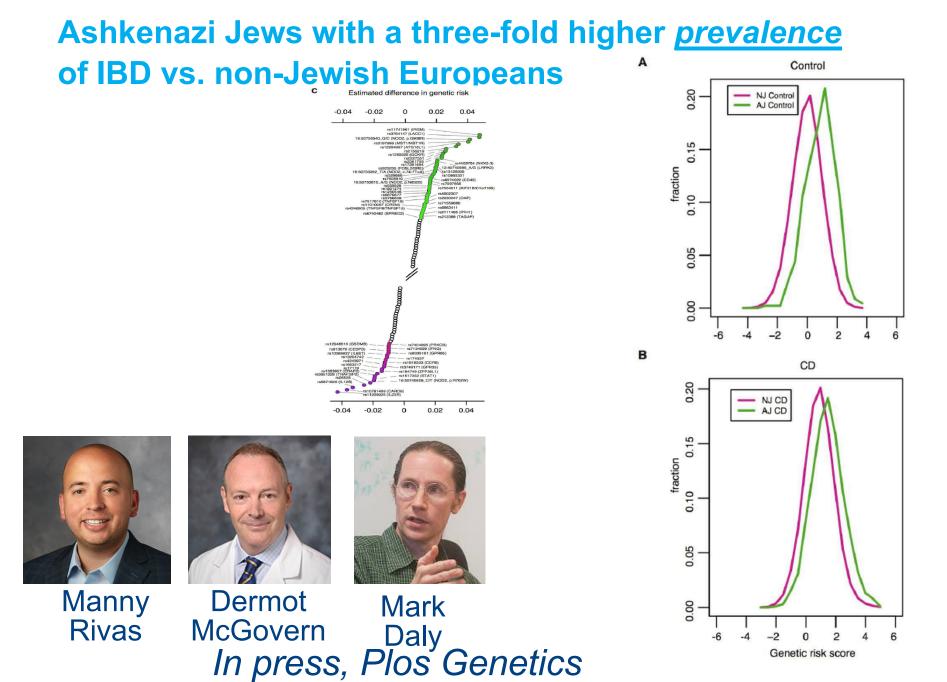
- 1. Lung: frequent infections
- 2. Male infertility
- 3. Frequent pancreatic *insufficiency* requiring enzyme replacement

<u>Heterozygous</u> CFTR carriers present with recurrent pancreatitis <u>phenotypically distinct</u> from CF patient manifestations

Large, collaborative biobank studies: Systematic evaluation of heterozygous carriers of (AR) Mendelian diseases

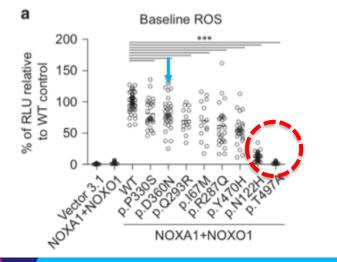
Mendelian diseases co-segregating with IBD

Table 2:


Relative Risk and Bonferroni Corrected *P*-values for Significant (P < 0.05) Mendelian Diseases Associated with CD and UC.^a

Mendelian Disease	Cases No.	CD RR	CD <i>P-</i> Value	UC RR	UC <i>P-</i> Value
Disorders of Phosphorous Metabolism	176,087	6.36	0.00E+00	6.42	0.00E+00
Long QT Syndrome	37,916	3.62	4.08E- 112	3.68	1.97E- 112
Haemophilia	53,855	3.47	6.48E- 145	3.03	7.27E- 100
Disorders of Urea Cycle Metabolism	18,042	4.04	3.36E-68	4.26	9.18E-74
Genetic Anomalies of Leukocytes	3,917	6.66	1.47E-39	6.83	6.20E-40
Tongue Tie	59,368	0.14	1.98E-49	0.2	4.04E-39
Lipoprotein Deficiencies	83,695	1.9	1.44E-38	2.03	2.93E-47
Disorders of Copper Metabolism	5911	7.25	6.53E-70	5.21	3.17E-36
Thalassemia	46,956	2.19	1.25E-35	2.29	1.24E-39
Chronic Granulomatous Disease	8058	4.13	9.31E-32	3.94	1.47E-27

67 million U.S. patients EHR


Han et al., IBD Journal 2018, 471 ¹⁴

NOX1 (NADPH oxidase 1) D360N: present in both AJs and non-AJ EA, higher effect sizes in AJs

	Case allele freq	Control allele freq	Odds ratio	P-value
All AJ UC	2.2%	0.9%	2.44	0.005

NOX1 is X-linked: Male > female effects

Hayes et al., CMGH 2015; 489

Holm Uhlig

Very early onset mutation: identifies NOX1 variants with much greater functional effects than D360N Schwerd et al., Mucosal Immunology 2018; 562

"Unexpected" Pleiotropy

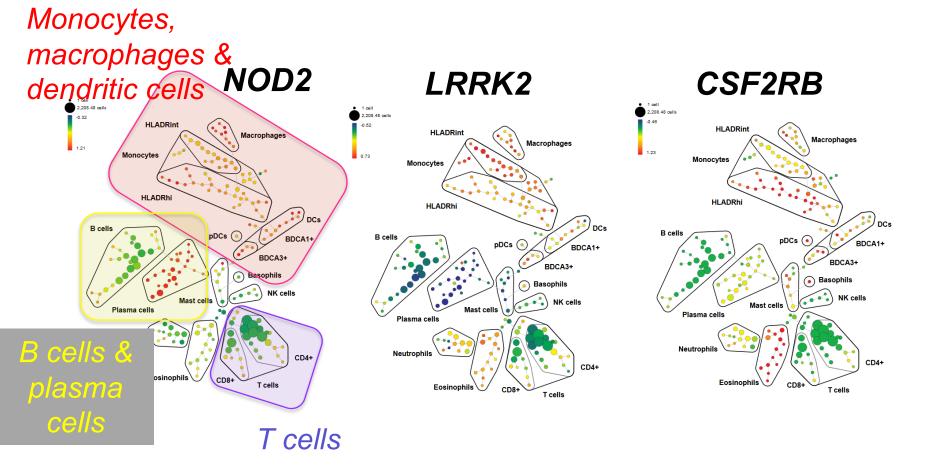
Jewish-predominant mutations: One gene (LRRK2), two diseases, risk and protective gene domains Risk Protective N551K R1398H G2019S N2081D M2397T МАРККК **WD40 Domains:** ARM ANK LRR ROC COR Armadillo Ankyrin Leucine **MAP** Kinase **C-terminal** Ras in **Kinase Kinase** Rich Complex of Roc Repeat Protein

Crohn's disease

- 1. Intestine
- 2. Disease onset: 15-30
- 3. Episodic inflammation

Parkinson's disease

- 1. Brain
- 2. Late onset: 50's & above
- 3. Inexorable degeneration


LRRK2 mutations: alterations in tissue-based phagocytes

Hui et al., Sci Trans Med, 2018

Inga Peter

Uncommon risk alleles of innate immunity: Cytof terminal ileal biopsies from resected tissues

At-risk populations with higher disease prevalences

Higher polygenic/all common variant risk scores: different effect sizes for uncommon alleles?

Disease prevalences estimates across populations

- challenges of Hispanic definitions.
- Sample size limitations & under-study of non-European populations

U.S. populations & CDC-based estimates of disease prevalence

"Monogenic" genes in complex traits: Conclusions & next steps----*continua* of allele, gene effects

1. Gene-centric view of disease pathogenesis

2. Systematic analysis of biobank-based genetic data will provide specific biologic/medical context to phenotypic variability of monogenic/high-effect genetic variants

3. Population differences: rare/uncommon variant differences & disease prevalence. *Domain-based* sequence annotation

4. Emerging recognition of the ubiquity of pleiotropy: defining causality & age/time-based factors

5. "Phenome coverage more limiting than genome coverage"–Visscher & Yang 2016, Nature Genetics, 707